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In this problem set we explore the quantum phase estimation algorithm further.

Problem 1 : Quantum phase estimation

We have seen that, if the phase φ of the eigenvalue can be expressed exactly using t qubits, then
we are able to retrieve its exact value by applying the quantum phase estimation algorithm

1. Now let’s suppose φ = 0(.
b
)φ1φ2 . . . φtφt+1 . . . φs, with s > t. Then, 2tφ = φ1φ2 . . . φt(.

b
)φt+1 . . . φs

is not an integer and hence we are only able to retrieve b = φ1φ2 . . . φt, its best integer ap-
proximation from below. That is, we can only recover the first t bits and lose the information
about the s− t bits beyond the (binary) decimal place.

Considering the algorithm, after applying the Hadamard gates to the first register and the
cascaded c-U2k gates to the second, we have that the first t qubits are in the state

|Ψ(φ)〉t =
1

2t/2

2t−1∑
x=0

e2πiφx|x〉t. (1)

If we now apply the QFT† we get

QFT†|Ψ(φ)〉t =
1

2t

2t−1∑
x=0

e2πiφx
2t−1∑
y=0

e−2πi
xy

2t |y〉t (2)

=
1

2t

2t−1∑
x=0

2t−1∑
y=0

exp
[
−2πix

y − 2tφ

2t

]
|y〉t (3)

if y − 2tφ 6= 0 ∀y, the sum over x does not give 2nδy,2tφ. It is rather expressed as the sum of
the first 2t elements of a geometric series (with x as exponent)

QFT†|Ψ(φ)〉t =
1

2t

2t−1∑
y=0

1− exp [−2πi(y − 2tφ)]

1− exp [−2πi(y − 2tφ)2−t]
|y〉t (4)

=
2t−1∑
y=0

fy(φ; t)|y〉t. (5)

This is the expression of the state we were looking for: a superposition of all the possible
outcomes, each with probability p(y).
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p(y) = |fy(φ; t)|2 =
1

22t

1− cos [2π(y − 2tφ)]

1− cos [2π(y − 2tφ)2−t]
(6)

2. Now, we want to compute p(|m − b| > e) where b is again the best approximation and m is
the result of the measurement on the first register.

• To retrieve an upper bound, we have to rewrite the coefficients of the state calculated
in the previous point in a more convenient form.

• Then, we define δ = φ−b2−t as the error given by considering only a t-bit representation
of the floating point number φ.

• Given that b = bφc, it is natural to see that 0 ≤ δ < 2−t.

• Then, we would like to rewrite the summation on all the possible states as a sum on all
the possible errors |l| = |m− b| we can make by measuring the bit string m.

• We know that we can only measure bit strings representing numbers from 0 to 2t − 1
(that is the range of numbers we can represent using t bits) and that the expression
e2πim/2

t is periodic with period 2t we have that |l| ≤ 2t − 1.

Combining these points, we obtain,

QFT†|Ψ(φ)〉t =
1

2t

2t−1∑
l=−2t−1

1− exp [−2πi(2tδ − l)]
1− exp [−2πi(2tδ − l)2−t]

|l mod 2t〉t. (7)

Now, let’s recall two useful inequalities

|1− eiθ| ≤ 2 ∀θ , (8)

|1− eiθ| ≥ 2|θ|
π

if− π ≤ θ ≤ π . (9)

We note that when −2t − 1 < l ≤ 2t − 1 we have −π < 2π(δ − l2−t) ≤ π

Then it follows

p(l) ≤ 1

4

1

(l − 2tδ)2
. (10)

Considering e as the maximum possible error that we want to make on estimating φ we obtain

p(|m− b| > e) =

−(e−1)∑
l=−2t−1+1

p(l) +
2t−1∑
l=e+1

p(l) (11)

≤ 1

4

 −(e−1)∑
l=−2t−1+1

1

(l − 2tδ)2
+

2t−1∑
l=e+1

1

(l − 2tδ)2

 (12)
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Accounting for 0 < 2tδ < 1, we can find an upper bound to the probability

p(|m− b| > e) ≤ 1

4

 −(e−1)∑
l=−2t−1+1

1

l2
+

2t−1∑
l=e+1

1

(l − 1)2

 (13)

≤ 1

2

2t−1−1∑
l=e

1

l2
, (14)

The inequality still holds if we replace the sum with an integral

p(|m− b| > e) ≤ 1

2

∫ 2t−1−1

l=e−1

1

l2
≤ 1

2(e− 1)
. (15)

This upper bound now depends only on the accuracy that we want to achieve.

3. Now, if we require

|m− b| < 2t−n − 1, (16)

that is, if we are required to estimate 2tφ with an accuracy better than 2−n, with n < t, with
probability p = 1− ε, then the previous result leads to

p(|m− b| < 2t−n − 1) ≥ 1− 1

2(2t−n − 2)
(17)

so

ε =
1

2(2t−n − 2)
(18)

therefore

t = n+ log2

(
2 +

1

2ε

)
. (19)

This is the minimal value of t needed to achieve the required accuracy.

4. We now suppose that we know the eigenvalue φ0. Our goal is to set the second register in
a state that is a good estimate of the eigenvector whose eigenvalue is φ0, namely |φ0〉. As
before, assume that 2tφ can be expressed exactly as a t-bit register. If we prepare the second
register in |ψin〉, after applying the Hadamard gates on the first register, we obtain

|Ψ1〉 =
1

2t/2

2t−1∑
x=0

∑
j

cj|x〉t ⊗ |φj〉 (20)
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where we have decomposed |ψin〉 =
∑

j cj|φj〉 on the basis of the eigenvector |φj〉 with eigen-
value φj. Now if we apply the controlled unitaries and the QFT† we get

|Ψ2〉 =
1

2t

2t−1∑
x=0

2t−1∑
y=0

∑
j

cjexp
[
−2πix

y − 2tφj
2t

]
|y〉t ⊗ |φj〉 (21)

since φj can be expressed exactly as a t- bit integer, the sum over x gives us the term 2tδy,2tφj
and we get

|Ψ2〉 =
∑
j

cj|2tφj〉t ⊗ |φj〉 (22)

so the probability of measuring 2tφ0, and therefore to have |φ0〉 in the second register, is
exactly |c0|2. The higher is |c0|2, the higher the probability to get the state we want.

5. Now 2tφ0 can’t be expressed exactly as t-bit integer; therefore, the sum over x after the phase
estimation protocol does not give the δ but the expression fy(φj; t) wrote down explicitly in
the first point of the exercise.

If we suppose that we measured b = b2tφ0c, then, the final state of our system is

|Ψ3〉 =
∑
j

cjfb(φj, t)|b〉t ⊗ |φj〉 (23)

and the probability to obtain the state |φ0〉 in the second register is

p(|φ0〉) =
|c0|2

22t

1− cos (2πδ2t)

1− cos (2πδ)
. (24)

6. In both cases (whether 2tφ0 is an exact t-bit integer or not), the probability of getting the
second register prepared in the state we are seeking is proportional to |c0|2. Considering that
|c0|2 is the overlap between the initial state |Ψinit〉 in which we prepare the second register
and the eigenstate |φ0〉 we want to obtain, a crucial link for the success of the algorithm is
to make an educated guess on the initial state, based on past or apriori knowledge on the
system we are studying.
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