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In this problem set we explore the quantum phase estimation algorithm further.

Problem 1 : Quantum phase estimation

We have seen that, if the phase ¢ of the eigenvalue can be expressed exactly using t qubits, then
we are able to retrieve its exact value by applying the quantum phase estimation algorithm

1. Now let’s suppose ¢ = 0(. )gblgf)g  QtDii1 - .. s, with s > t. Then, 2 = @16 . .. gf)t(z.))gbtﬂ 0N

is not an integer and hence we are only able to retrieve b = ¢1¢5 ... ¢y, its best integer ap-
proximation from below. That is, we can only recover the first ¢ bits and lose the information
about the s — t bits beyond the (binary) decimal place.

Considering the algorithm, after applying the Hadamard gates to the first register and the
cascaded c-U?" gates to the second, we have that the first ¢ qubits are in the state
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If we now apply the QFTT we get
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if y — 2'¢ # 0 Vy, the sum over x does not give 2”9, ot4. It is rather expressed as the sum of
the first 2! elements of a geometric series (with = as exponent)

122 1 _exp [—27i(y — 2'¢)]
t ——
QFT W (), = ot ; 1 —exp [—2mi(y — 2¢¢p)27]

2t—1

= > f@ 0y (5)

[y): (4)

This is the expression of the state we were looking for: a superposition of all the possible
outcomes, each with probability p(y).
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2. Now, we want to compute p(|m — b| > e) where b is again the best approximation and m is
the result of the measurement on the first register.

e To retrieve an upper bound, we have to rewrite the coefficients of the state calculated
in the previous point in a more convenient form.

e Then, we define § = ¢ —b27" as the error given by considering only a ¢-bit representation
of the floating point number ¢.

e Given that b = [¢], it is natural to see that 0 < ¢ < 27"

e Then, we would like to rewrite the summation on all the possible states as a sum on all
the possible errors |I| = |m — b| we can make by measuring the bit string m.

e We know that we can only measure bit strings representing numbers from 0 to 2 — 1
(that is the range of numbers we can represent using ¢ bits) and that the expression

e2™m/2" is periodic with period 2! we have that |I] < 2¢ — 1.

Combining these points, we obtain,
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Now, let’s recall two useful inequalities
1—e? <2 v, (8)
, 2
|1—629|Zﬂ f—r<0<m. (9)
™

We note that when —2" —1 <[ <2'—1 we have —7 < 27(d —127%) <7
Then it follows
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Considering e as the maximum possible error that we want to make on estimating ¢ we obtain
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Accounting for 0 < 2!§ < 1, we can find an upper bound to the probability
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The inequality still holds if we replace the sum with an integral
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This upper bound now depends only on the accuracy that we want to achieve.
. Now, if we require
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that is, if we are required to estimate 2'¢ with an accuracy better than 27", with n < t, with
probability p = 1 — €, then the previous result leads to
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This is the minimal value of ¢t needed to achieve the required accuracy.

. We now suppose that we know the eigenvalue ¢o. Our goal is to set the second register in
a state that is a good estimate of the eigenvector whose eigenvalue is ¢, namely |¢g). As
before, assume that 2!¢ can be expressed exactly as a t-bit register. If we prepare the second
register in |1;,), after applying the Hadamard gates on the first register, we obtain
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where we have decomposed [t;,) = > _; ¢j|¢;) on the basis of the eigenvector |¢;) with eigen-
value ¢;. Now if we apply the controlled unitaries and the QFTT we get
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since ¢; can be expressed exactly as a t- bit integer, the sum over x gives us the term 2t5y,2t¢j
and we get
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so the probability of measuring 2'¢y, and therefore to have |¢g) in the second register, is
exactly |co|?. The higher is |co|?, the higher the probability to get the state we want.

. Now 2!¢, can’t be expressed exactly as t-bit integer; therefore, the sum over x after the phase
estimation protocol does not give the § but the expression f,(¢;;t) wrote down explicitly in
the first point of the exercise.

If we suppose that we measured b = |2%¢y |, then, the final state of our system is
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and the probability to obtain the state |¢o) in the second register is
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. In both cases (whether 2'¢, is an exact ¢-bit integer or not), the probability of getting the
second register prepared in the state we are seeking is proportional to |cy|?. Considering that
|co|? is the overlap between the initial state |W;,;) in which we prepare the second register
and the eigenstate |¢g) we want to obtain, a crucial link for the success of the algorithm is
to make an educated guess on the initial state, based on past or apriori knowledge on the
system we are studying.



